Publications

Please see also MathSciNet, ORCID, Google Scholar, and researchmap.

Preprints

  1. Tomoya Kemmochi. $L^p$-resolvent estimate for finite element approximation of the Stokes operator. arXiv:2208.11892

  2. Tomoya Kemmochi, Yuto Miyatake, and Koya Sakakibara. Structure-preserving numerical methods for constrained gradient flows of planar closed curves with explicit tangential velocities. arXiv:2208.00675

Reviewed articles

  1. Tomoya Kemmochi and Shun Sato. Scalar auxiliary variable approach for conservative/dissipative partial differential equations with unbounded energy functionals. BIT, vol. 62, no. 3, pp. 903--930, 2022. DOI: 10.1007/s10543-021-00904-w

    [Journal] [Zbl 07569612] [arXiv]

  2. Fuminori Tatsuoka, Tomohiro Sogabe, Yuto Miyatake, Tomoya Kemmochi, and Shao-Liang Zhang. Computing the matrix fractional power with the double exponential formula. Electron. Trans. Numer. Anal., vol. 54, pp. 558--580, 2021. DOI: 10.1553/etna_vol54s558

    [Journal] [MR4310720] [Zbl 1475.65025] [arXiv]

  3. Yuki Satake, Tomohiro Sogabe, Tomoya Kemmochi, and Shao-Liang Zhang. On a transformation of the $*$-congruence Sylvester equation for the least squares optimization. Optim. Methods Softw., vol. 35, no. 5, pp. 974--981, 2020. DOI: 10.1080/10556788.2020.1734004

    [Journal] [MR4144128] [Zbl 1475.15017]

  4. Takahito Kashiwabara and Tomoya Kemmochi. Stability, analyticity, and maximal regularity for parabolic finite element problems on smooth domains. Math. Comp., vol. 89, pp. 1647--1679, 2020. DOI: 10.1090/mcom/3500

    [Journal] [MR4081914] [Zbl 1436.65139] [arXiv]

  5. Takahito Kashiwabara and Tomoya Kemmochi. Pointwise error estimates of linear finite element method for Neumann boundary value problems in a smooth domain. Numer. Math., vol. 144, no. 3, pp. 553--584, 2020. DOI: 10.1007/s00211-019-01098-8

    [Journal] [MR4071825] [Zbl 1437.65195] [arXiv]

  6. Kosuke Nakano, Tomoya Kemmochi, Yuto Miyatake, Tomohiro Sogabe, and Siao-Liang Zhang. Modified Strang splitting for semilinear parabolic problems. JSIAM Letters, vol. 11, pp. 77--80, 2019. DOI: 10.14495/jsiaml.11.77

    [Journal] [MR4047802] [Zbl 1434.65130]

  7. Tomoya Kemmochi. Numerical Analysis of the Allen-Cahn Equation with Coarse Meshes. J. Math. Res. Appl., vol. 39, no. 6, pp. 709--717, 2019. DOI: 10.3770/j.issn:2095-2651.2019.06.014

    [Journal] [MR4165358] [Zbl 1449.65187]

  8. Yuki Satake, Masaya Oozawa, Tomohiro Sogabe, Yuto Miyatake, Tomoya Kemmochi, and Shao-Liang Zhang. Relation between the T-congruence Sylvester equation and the generalized Sylvester equation. Appl. Math. Lett., vol. 96, pp. 7--13, 2019. DOI: 10.1016/j.aml.2019.04.007

    [Journal] [MR3943431] [Zbl 1420.15014]

  9. Tomoya Kemmochi. On the finite element approximation for non-stationary saddle-point problems. Japan J. Indust. Appl. Math., vol. 35, no. 2, pp. 423--439, 2018. DOI: 10.1007/s13160-017-0293-5

    [Journal] [MR3816236] [Zbl 1406.65115] [arXiv]

    [Read-only link]

  10. Tomoya Kemmochi. Numerical analysis of elastica with obstacle and adhesion effects. Appl. Anal., vol. 98, no. 6, pp. 1085--1103, 2019. DOI: 10.1080/00036811.2017.1416100

    [Journal] [MR3923026] [Zbl 1409.74016] [arXiv]

  11. Tomoya Kemmochi and Norikazu Saito. Discrete maximal regularity and the finite element method for parabolic equations. Numer. Math., vol. 138, no. 4, pp. 905--937, 2018. DOI: 10.1007/s00211-017-0929-z

    [Journal] [MR3778340] [Zbl 1448.65164] [arXiv]

    [Read-only link]

  12. Tomoya Kemmochi. Energy dissipative numerical schemes for gradient flows of planar curves. BIT, vol. 57, no. 4, pp. 991--1017, 2017. DOI: 10.1007/s10543-017-0685-6

    [Journal] [MR3735998] [Zbl 1380.65036] [arXiv]

    [Movies] [Read-only link]

  13. Tomoya Kemmochi. Discrete maximal regularity for abstract Cauchy problems. Studia Math., vol. 234, no. 3, pp. 241--263, 2016. DOI: 10.4064/sm8495-7-2016

    [Journal] [MR3549514] [Zbl 1359.65082]

    [On-line first version] [Preprint]

Reviewed articles in Japanese

  1. 川畑佑典、三浦達彦、渡邉陽太、池祐一、江間陽平、 剱持智哉、松原宰栄、米田剛、千葉優作、柏原崇人. 磁気流体緩和法の初期条件依存性 ∼force-free alphaの空間分布∼. 数理科学実践研究レター, 2018.

  2. 渡邉陽太、川畑佑典、三浦達彦、池祐一、江間陽平、 剱持智哉、松原宰栄、米田剛、千葉優作、柏原崇人. 磁気流体緩和法の初期条件依存性 ∼磁力線形状とエネルギー∼. 数理科学実践研究レター, 2018.

Non-reviewed articles

  1. 剱持智哉. Scalar auxiliary variable approachの紹介とその拡張. RIMS講究録 No. 2167, RIMS共同研究 (公開型) 諸科学分野を結ぶ基礎学問としての数値解析学, 京都大学数理解析研究所, 2020年.

  2. 立岡文理, 曽我部知広, 剱持智哉, 張紹良. 行列対数関数のための二重指数関数型公式の収束率について. RIMS講究録 No. 2167, RIMS共同研究 (公開型) 諸科学分野を結ぶ基礎学問としての数値解析学, 京都大学数理解析研究所, 2020年.

  3. 剱持智哉. Energy dissipative numerical schemes for gradient flows of planar curves. RIMS講究録 No. 2146, RIMS共同研究 (公開型) 偏微分方程式の解の形状解析, 京都大学数理解析研究所, 2020年.

  4. 剱持智哉. Allen-Cahn方程式の数値解に対する漸近的な誤差解析. RIMS講究録 No. 2094, RIMS共同研究 (公開型) 数値解析学の最前線—理論・方法・応用—, 京都大学数理解析研究所, 2018年.

  5. 剱持智哉. 付着の影響のある基板上の薄膜の形状決定問題に関する数値解析.
    RIMS講究録 No. 1995, 現象解明に向けた数値解析学の新展開, 京都大学数理解析研究所, 2016年.