Publications

Please see also MathSciNet, ORCID, Google Scholar, and researchmap.

Preprints

Reviewed articles

  1. Yuki Satake, Tomohiro Sogabe, Tomoya Kemmochi, and Shao-Liang Zhang. On a transformation of the ∗-congruence Sylvester equation for the least squares optimization.
    Optim. Methods Softw.
    DOI: 10.1080/10556788.2020.1734004
    [Journal]

  2. Takahito Kashiwabara and Tomoya Kemmochi. Stability, analyticity, and maximal regularity for parabolic finite element problems on smooth domains.
    Math. Comp., vol. 89, pp. 1647-1679, 2020.
    DOI: 10.1090/mcom/3500
    [Journal] [arXiv] [MR4081914]

  3. Takahito Kashiwabara and Tomoya Kemmochi. Pointwise error estimates of linear finite element method for Neumann boundary value problems in a smooth domain.
    Numer. Math, vol. 144, pp. 553–-584, 2020.
    DOI: 10.1007/s00211-019-01098-8
    [Journal] [arXiv] [MR4071825]

  4. Kosuke Nakano, Tomoya Kemmochi, Yuto Miyatake, Tomohiro Sogabe, and Siao-Liang Zhang. Modified Strang splitting for semilinear parabolic problems.
    JSIAM Letters, vol. 11, pp. 77–80, 2019.
    DOI: 10.14495/jsiaml.11.77
    [Journal] [MR4047802]

  5. Tomoya Kemmochi. Numerical Analysis of the Allen-Cahn Equation with Coarse Meshes.
    J. Math. Res. Appl., vol. 39, no. 6, pp. 709–717, 2019.
    DOI: 10.3770/j.issn:2095-2651.2019.06.014
    [Journal]

  6. Yuki Satake, Masaya Oozawa, Tomohiro Sogabe, Yuto Miyatake, Tomoya Kemmochi, and Shao-Liang Zhang. Relation between the T-congruence Sylvester equation and the generalized Sylvester equation.
    Appl. Math. Lett., vol. 96, pp. 7–13, 2019.
    DOI: 10.1016/j.aml.2019.04.007
    [Journal] [MR3943431]

  7. Tomoya Kemmochi. On the finite element approximation for non-stationary saddle-point problems.
    Japan J. Indust. Appl. Math., vol. 35. no. 2, pp. 423–439, 2018.
    DOI: 10.1007/s13160-017-0293-5
    [Read-only link] [Journal] [MR3816236] [arXiv]

  8. Tomoya Kemmochi. Numerical analysis of elastica with obstacle and adhesion effects.
    Appl. Anal., vol. 98, no. 6, pp. 1085–1103, 2019.
    DOI: 10.1080/00036811.2017.1416100
    [Journal] [MR3923026] [arXiv]

  9. Tomoya Kemmochi and Norikazu Saito. Discrete maximal regularity and the finite element method for parabolic equations.
    Numer. Math., vol. 138, no. 4, pp. 905–937.
    DOI: 10.1007/s00211-017-0929-z
    [Read-only link] [Journal] [MR3778340] [Zbl 06858661] [arXiv]

  10. Tomoya Kemmochi. Energy dissipative numerical schemes for gradient flows of planar curves.
    BIT Numer. Math., vol. 57, no. 4, pp. 991–1017, 2017.
    DOI: 10.1007/s10543-017-0685-6
    [Movies] [Read-only link] [Journal] [MR3735998] [Zbl 1380.65036] [arXiv]

  11. Tomoya Kemmochi. Discrete maximal regularity for abstract Cauchy problems.
    Studia Math., vol. 234, no. 3, pp. 241–263, 2016.
    DOI: 10.4064/sm8495-7-2016
    [On-line first version] [Journal] [MR3549514] [Zbl 1359.65082] [Preprint]

Reviewed articles in Japanese

  1. 川畑佑典、三浦達彦、渡邉陽太、池祐一、江間陽平、 剱持智哉、松原宰栄、米田剛、千葉優作、柏原崇人. 磁気流体緩和法の初期条件依存性 ∼force-free alphaの空間分布∼. 数理科学実践研究レター, 2018.

  2. 渡邉陽太、川畑佑典、三浦達彦、池祐一、江間陽平、 剱持智哉、松原宰栄、米田剛、千葉優作、柏原崇人. 磁気流体緩和法の初期条件依存性 ∼磁力線形状とエネルギー∼. 数理科学実践研究レター, 2018.

Non-reviewed articles

  1. 剱持智哉. Energy dissipative numerical schemes for gradient flows of planar curves. RIMS講究録 No. 2146, RIMS共同研究 (公開型) 偏微分方程式の解の形状解析, 京都大学数理解析研究所, 2020年.

  2. 剱持智哉. Allen-Cahn方程式の数値解に対する漸近的な誤差解析. RIMS講究録 No. 2094, RIMS共同研究 (公開型) 数値解析学の最前線—理論・方法・応用—, 京都大学数理解析研究所, 2018年.

  3. 剱持智哉. 付着の影響のある基板上の薄膜の形状決定問題に関する数値解析.
    RIMS講究録 No. 1995, 現象解明に向けた数値解析学の新展開, 京都大学数理解析研究所, 2016年.