Publications
Please see also MathSciNet, ORCID, Google Scholar, and researchmap.
Preprints
-
Higher order discrete gradient method by the discontinuous Galerkin time-stepping method. arXiv:2308.02334
-
Structure-preserving numerical methods for constrained gradient flows of planar closed curves with explicit tangential velocities. arXiv:2208.00675
Reviewed articles
-
Computing the matrix exponential with the double exponential formula. Special Matrices, vol. 12, no. 1, 2024. DOI: 10.1515/spma-2024-0013
-
Discrete maximal regularity for the discontinuous Galerkin time-stepping method without logarithmic factor. SIAM J. Numer. Anal., vol. 62, no. 4, pp. 1638--1659, 2024. DOI: 10.1137/23M1580802
-
Matrix equation representation of the convolution equation and its unique solvability. Special Matrices, vol. 12, no. 1, 2024. DOI: 10.1515/spma-2024-0001
-
Migrating elastic flows. J. Math. Pures Appl., vol. 185, pp. 47--62, 2024. DOI: 10.1016/j.matpur.2024.02.003
-
Shifted LOPBiCG: a locally orthogonal product-type method for solving nonsymmetric shifted linear systems based on Bi-CGSTAB. Numer. Linear Algebra Appl., vol. 31, no. 2, pp. e2538, 2024. DOI: 10.1016/j.amc.2023.128155
[Journal]
-
Tensor product-type methods for solving Sylvester tensor equations. Appl. Math. Comput., vol. 457, no. 15, pp. 128155, 2023. DOI: 10.1016/j.amc.2023.128155
[Journal]
-
A structure-preserving numerical method for the fourth-order geometric evolution equations for planar curves. Commun. Math. Res., vol. 39, no. 2, pp. 296--330, 2023. DOI: 10.4208/cmr.2022-0040
-
Scalar auxiliary variable approach for conservative/dissipative partial differential equations with unbounded energy functionals. BIT, vol. 62, no. 3, pp. 903--930, 2022. DOI: 10.1007/s10543-021-00904-w
[Journal] [Zbl 07569612] [arXiv]
-
Computing the matrix fractional power with the double exponential formula. Electron. Trans. Numer. Anal., vol. 54, pp. 558--580, 2021. DOI: 10.1553/etna_vol54s558
[Journal] [MR4310720] [Zbl 1475.65025] [arXiv]
-
On a transformation of the $*$-congruence Sylvester equation for the least squares optimization. Optim. Methods Softw., vol. 35, no. 5, pp. 974--981, 2020. DOI: 10.1080/10556788.2020.1734004
[Journal] [MR4144128] [Zbl 1475.15017]
-
Stability, analyticity, and maximal regularity for parabolic finite element problems on smooth domains. Math. Comp., vol. 89, pp. 1647--1679, 2020. DOI: 10.1090/mcom/3500
[Journal] [MR4081914] [Zbl 1436.65139] [arXiv]
-
Pointwise error estimates of linear finite element method for Neumann boundary value problems in a smooth domain. Numer. Math., vol. 144, no. 3, pp. 553--584, 2020. DOI: 10.1007/s00211-019-01098-8
[Journal] [MR4071825] [Zbl 1437.65195] [arXiv]
-
Modified Strang splitting for semilinear parabolic problems. JSIAM Letters, vol. 11, pp. 77--80, 2019. DOI: 10.14495/jsiaml.11.77
[Journal] [MR4047802] [Zbl 1434.65130]
-
Numerical Analysis of the Allen-Cahn Equation with Coarse Meshes. J. Math. Res. Appl., vol. 39, no. 6, pp. 709--717, 2019. DOI: 10.3770/j.issn:2095-2651.2019.06.014
[Journal] [MR4165358] [Zbl 1449.65187]
-
Relation between the T-congruence Sylvester equation and the generalized Sylvester equation. Appl. Math. Lett., vol. 96, pp. 7--13, 2019. DOI: 10.1016/j.aml.2019.04.007
[Journal] [MR3943431] [Zbl 1420.15014]
-
On the finite element approximation for non-stationary saddle-point problems. Japan J. Indust. Appl. Math., vol. 35, no. 2, pp. 423--439, 2018. DOI: 10.1007/s13160-017-0293-5
[Journal] [MR3816236] [Zbl 1406.65115] [arXiv]
-
Numerical analysis of elastica with obstacle and adhesion effects. Appl. Anal., vol. 98, no. 6, pp. 1085--1103, 2019. DOI: 10.1080/00036811.2017.1416100
[Journal] [MR3923026] [Zbl 1409.74016] [arXiv]
-
Discrete maximal regularity and the finite element method for parabolic equations. Numer. Math., vol. 138, no. 4, pp. 905--937, 2018. DOI: 10.1007/s00211-017-0929-z
[Journal] [MR3778340] [Zbl 1448.65164] [arXiv]
-
Energy dissipative numerical schemes for gradient flows of planar curves. BIT, vol. 57, no. 4, pp. 991--1017, 2017. DOI: 10.1007/s10543-017-0685-6
[Journal] [MR3735998] [Zbl 1380.65036] [arXiv]
[Movies] [Read-only link]
-
Discrete maximal regularity for abstract Cauchy problems. Studia Math., vol. 234, no. 3, pp. 241--263, 2016. DOI: 10.4064/sm8495-7-2016
[Journal] [MR3549514] [Zbl 1359.65082]
Reviewed articles in Japanese
-
川畑佑典、三浦達彦、渡邉陽太、池祐一、江間陽平、 剱持智哉、松原宰栄、米田剛、千葉優作、柏原崇人. 磁気流体緩和法の初期条件依存性 ∼force-free alphaの空間分布∼. 数理科学実践研究レター, 2018.
-
渡邉陽太、川畑佑典、三浦達彦、池祐一、江間陽平、 剱持智哉、松原宰栄、米田剛、千葉優作、柏原崇人. 磁気流体緩和法の初期条件依存性 ∼磁力線形状とエネルギー∼. 数理科学実践研究レター, 2018.
Non-reviewed articles
-
剱持智哉. Scalar auxiliary variable approachの紹介とその拡張. RIMS講究録 No. 2167, RIMS共同研究 (公開型) 諸科学分野を結ぶ基礎学問としての数値解析学, 京都大学数理解析研究所, 2020年.
-
立岡文理, 曽我部知広, 剱持智哉, 張紹良. 行列対数関数のための二重指数関数型公式の収束率について. RIMS講究録 No. 2167, RIMS共同研究 (公開型) 諸科学分野を結ぶ基礎学問としての数値解析学, 京都大学数理解析研究所, 2020年.
-
剱持智哉. Energy dissipative numerical schemes for gradient flows of planar curves. RIMS講究録 No. 2146, RIMS共同研究 (公開型) 偏微分方程式の解の形状解析, 京都大学数理解析研究所, 2020年.
-
剱持智哉. Allen-Cahn方程式の数値解に対する漸近的な誤差解析. RIMS講究録 No. 2094, RIMS共同研究 (公開型) 数値解析学の最前線—理論・方法・応用—, 京都大学数理解析研究所, 2018年.
-
剱持智哉. 付着の影響のある基板上の薄膜の形状決定問題に関する数値解析.
RIMS講究録 No. 1995, 現象解明に向けた数値解析学の新展開, 京都大学数理解析研究所, 2016年.